NPFL103: Information Retrieval (2)

Dictionaries, Tolerant retrieval, Spelling correction

Pavel Pecina

pecina@ufal.mff.cuni.cz

Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics
Charles University

Based on slides by Hinrich Schiitze, University of Stuttgart.

1/52



Contents

Dictionaries
Hashes and trees

Wildcard queries
Permuterm index
k-gram index

Spelling correction

Levenshtein distance

Soundex

2/52



Dictionaries

Dictionaries

3/52



Inverted index

For each term t, we store a list of all documents that contain t.

| Brutus | — [ 1] 2] 4] 11[31][45][173] 174 ]

| Caesar | — [ 1] 2] 4] 5] 6]16] 57132 .|

| CatpurNiA | — | 2 [ 31 [ 54 [ 101 |

——
dictionary postings

4/52



Dictionaries

Dictionary as array of fixed-width entries

> For each term, we need to store a couple of items:
» document frequency
> pointer to postings list
> ..

> Assume for the time being that we can store this information in a
fixed-length entry.

> Assume that we store these entries in an array.

5/52



Dictionaries

Dictionary as array of fixed-width entries

Dictionary: term document pointer  to
frequency postings list
a 656,265 —
aachen 65 —
zulu 221 —
Space needed: 20 bytes 4 bytes 4 bytes

1. How do we look up a query term g; in this array at query time?

2. Which data structure do we use to locate the entry (row) in the array
where g; is stored?

6/52



Dictionaries

Data structures for looking up term

» Two main classes of data structures: hashes and trees.
» Some IR systems use hashes, some use trees.

» Criteria for when to use hashes vs. trees:
1. Is there a fixed number of terms or will it keep growing?
2. What are the frequencies with which various keys will be accessed?

3. How many terms are we likely to have?

8/52



Dictionaries

Hashes

» Each vocabulary term is hashed into an integer.
> Try to avoid collisions

> At query time, do the following: hash query term, resolve collisions,
locate entry in fixed-width array

» Pros:

1. Lookup in a hash is faster than lookup in a tree.
2. Lookup time is constant.

» Cons:

1. no way to find minor variants (resume vs. résumé)
2. no prefix search (all terms starting with automat)
3. need to rehash everything periodically if vocabulary keeps growing

9/52



Dictionaries

Trees

> Trees solve the prefix problem (e.g. find all terms starting with auto).

» Search is slightly slower than in hashes: O(log M), where M is the size
of the vocabulary

» O(log M) only holds for balanced trees. Rebalancing is expensive.
> B-trees mitigate the rebalancing problem.

> B-tree definition: every internal node has a number of children in the
interval [a, b] where a, b are appropriate positive integers, e.g., [2,4].

> Simplest tree: binary tree

10/ 52



Dictionaries

Binary tree example

Q‘Tfar %

Aq,

e o o o

Y o &
I ~ g
@ & &

g . =
= @

&

11/52



Dictionaries

B-tree example

12/52



Wildcard queries

Wildcard queries

13/52



Wildcard queries

» mon™ find all docs containing any term beginning with mon
> With B-tree dictionary: find all terms t in the range mon < t < moo

» “mon: find all docs containing any term ending with mon
1. Maintain an additional tree for terms backwards

2. Retrieve all terms tin the range: nom < t < non
> Result: A set of terms that are matches for wildcard query

» Then retrieve documents that contain any of these terms

14 /52



Wildcard queries

How to handle * in the middle of a term

» Example: m*nchen

> Simple approach: We look up m*and *nchen in the backward B-tree
and intersect the two sets of terms (expensive).

> Alternative: permuterm index
> Basic idea: Rotate every wildcard query so that * occurs at the end.
> Store each of these rotations in the dictionary, say, in a B-tree

» For term HELLO: add hello$, ello$h, lloshe, lo$hel, and o$hell to the

B-tree where $ is a special symbol

16 /52



Wildcard queries

Permuterm — term mapping

hello$

elloSh

hello

loShel

17 /52



Wildcard queries

Permuterm index

> For HELLO, we’ve stored: hello$, ello$h, llo$he, lo$hel, and o$hell

P> Queries:

> For X, look up X$
For X*, look up $X*
For *X, look up X$*
For *X*, look up X*
For X*Y, look up Y$X*

vvyYyy

» Example: For hel*o, look up o$hel*

18 /52



Wildcard queries

Processing a lookup in the permuterm index

> Rotate query wildcard to the right
> Use B-tree lookup as before

» Problem: Permuterm more than quadruples the size of the dictionary
compared to a regular B-tree (empirical estimation).

19 /52



Wildcard queries

k-gram indexes

> More space-efficient than permuterm index

> Enumerate all character k-grams (sequence of k characters) occurring
in a term (2-grams are called bigrams).

» Example: from “April is the cruelest month” we get the bigrams:
$a ap prriil [$ $i is s$ $t th he e$ $c cr ru ue el le es st t$ $m mo on nt h$

> $is a special word boundary symbol, as before.

> Maintain an inverted index from bigrams to the terms that contain
the bigram.

21/52



Wildcard queries

Postings list in a 3-gram inverted index

etr —| geetroor METRIC PETRIFY RETRIEVAL

22/52



Wildcard queries

k-gram (bigram, trigram, ...) indexes

> Note that we now have two different types of inverted indexes

» The term-document inverted index for finding documents based on a
query consisting of terms

Brutus | — [ 1] 2[4 [ 11[31]45][173 [ 174 ]

» The k-gram index for finding terms based on a query k-grams

etr ——{ BEeeTROOT METRIC PETRIFY RETRIEVAL

23/52



Wildcard queries

Processing wildcarded terms in a bigram index

» Query mon™can now be run as: $m AND mo AND on
> Gets us all terms with the prefix mon ...
...but also many “false positives” like MOON.
> We must postfilter these terms against query.
> Surviving terms are then looked up in term-document inverted index.

> k-gram index vs. permuterm index
> k-gram index is more space efficient.

> Permuterm index doesn’t require postfiltering.

24 /52



Wildcard queries

Exercise

> Google has very limited support for wildcard queries.

» Query example which doesn’t work well on Google: [gen™ universit™]

> Intention: you are looking for the University of Geneva, but don’t know
which accents to use for the French words for university and Geneva.

» According to Google search basics, 2010-04-29: “Note that the *
operator works only on whole words, not parts of words.”

> But this is not entirely true. Try e.g. [pythag™]

» Exercise: Why doesn’t Google fully support wildcard queries?

25/52



Processing wildcard queries in the term-document index

> Problem 1: Potential execution of a large number of Boolean queries.
> Most straightforward semantics: Conjunction of disjunctions

» For [gen™ universit*]: geneva university OR geneva université orR genéve
university OR genéve université or general universities OR ...

> Very expensive

> Problem 2: Users hate to type.

> If abbreviated queries like [pyth™* theo™] for [pythagoras’ theorem] are
allowed, users will use them a lot.

» This would significantly increase the cost of answering queries.

> Somewhat alleviated by Google Suggest

26/52



Spelling correction

Spelling correction

27/52



Spelling correction

Spelling correction

» Two principal uses:
1. Correcting documents being indexed
2. Correcting user queries at query time
» Two different methods for spelling correction:
1. Isolated word spelling correction
» Check each word on its own for misspelling

> Will not catch typos resulting in correctly spelled words,
e.g., an asteroid that fell form the sky

2. Context-sensitive spelling correction
> Look at surrounding words

» Can correct form/from error above

28 /52



Spelling correction

Correcting documents vs. correcting queries

> We're not interested in interactive spelling correction of documents.

» In IR, we use document correction primarily for OCR’ed documents.
(OCR = optical character recognition)

> The general philosophy in IR is: don’t change the documents.

> Spelling errors in queries are much more frequent

29 /52



Spelling correction

Isolated word spelling correction

» Premises:
1. There is a list of “correct words” from which the correct spellings come.

2. We have a way of computing the distance between a misspelled word
and a correct word.

» Simple algorithm: return the “correct” word that has the smallest
distance to the misspelled word.

» Example: informaton — information

> For the list of correct words, we can use the vocabulary of all words
that occur in our collection.

» Why is this problematic?

30/52



Spelling correction

Alternatives to using the term vocabulary

> A standard dictionary (Webster’s, OED etc.)
> An industry-specific dictionary (for specialized IR systems)

> The term vocabulary of the collection, appropriately weighted

31/52



Spelling correction

Distance between misspelled word and “correct” word

We will discuss several alternatives:
1. Edit distance and Levenshtein distance
2. Weighted edit distance

3. k-gram overlap

32/52



Edit distance

> The edit distance between string s; and string s is the minimum
number of basic operations that convert 51 to so.

> Levenshtein: The basic operations are insert, delete, and replace.

> Examples:

> Levenshtein distance dog-do: 1
» Levenshtein distance cat-cart: 1
» Levenshtein distance cat-cut: 1
» Levenshtein distance cat-act: 2

» Damerau-Levenshtein: transposition as a fourth possible operation.

> Example:
» Damerau-Levenshtein distance cat-act: 1

33/52



Levenshtein distance

Levenshtein distance

34/52



Levenshtein distance: Computation




Levenshtein distance

Levenshtein distance: Algorithm

LEVENSHTEINDISTANCE(S1, 52)
1 for i<« 0to |si]
do m[i,0] =i
for j < 0 to |s2]
do m[07./] =J
for i< 1to |si]
do for j « 1 to |s2]
do if s1[i] = sa[J]
then m[i, j| = min{m[i-1, j|+1, m[i, j-1]+1, m[i-1, j-1]}
else mli,j] = min{m[i-1, j]+1, m[i, j-1]+1, m[i-1, j-1]+1}
return m[|si|, |s2]]

O 0 N O U A W N

—_
(=)

Operations: insert (cost 1), delete (cost 1), replace (cost 1), copy (cost 0)

36/52



Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Levenshtein distance: Example

T T~ T =T -1 1
o | 1|1 | 2]2 || 3[3 || 44
1] 7]2 | 2[3 | 3|4 | 45

U Ta || 207 | 202 | 3[3 | a|a
2 | 22 7]3 ] 34 | 45

T2 32 | 31 || 212 | 303

N ENEEN EIEN E1ER K
3 | 43 | a2 || 32 | 32

e T afa | als [ 2][3 | 3]3
4 | 5[4 | 5(3 | 42| 3|3

37/52



cost of getting here from my
upper left neighbor
— copy/replace

cost of getting here from my
upper neighbor
— delete

cost of getting here from my
left neighbor
— insert

the minimum of the three
possible “movements”; the
cheapest way of getting here

Levenshtein distance

Each cell of Levenshtein matrix

38/52



Dictionaries Wildcard queries Spelling correction

Levenshtein distance

Example: Levenshtein distance osLo — sNow

[T T -1~ 1 > [ 1
o | 11 | 22 | 3[3 | a|a
1 112 || 2[3 | 2]4 || 45
° 1 2 1 2|2 | 32 || 3[3
2 | 112 | 2]3 | 3|3 | 3|4
s 2 301 212 | 3(3 | 43
| 3 | 3|2 | 2/3 | 3|4 | 4|4
3 | 4|2 || 32 | 3[3 | a|a
4 | 413 | 3|3 | 2]4 | 4]5
© 4 | 503 | a3 || 42 | 33

cost operation H input ‘ output

*

1 delete o

0 (copy) s s
1 replace | n
0 (copy) o o
1 insert * w

39/52



Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Example: Levenshtein distance cAT — cATCAT

W WINN| ==
BIWIWINIIN| O =
NIN|=-—-O|N| =
WIN[IN Q=N N
- [ DN | W N
NI Q= |NN|W|| W
SN = | WIN| D W
- NN W[ W] W~
- W[ NS w o] s
N W[|W W&
N A~||W UGl
[SSRNSSRIRN-N NS, §INS; § Mo NN~ Y
Wl U~ U1]| ||

cost operation H input ‘ output
*

1 insert [
1 insert * a
1 insert * t
0 (copy) C C
0 (copy) a a
0 (copy) t t

40/ 52



Dictionaries Wildcard queries Spelling correction Levenshtein distance

Example: Levenshtein distance cAT — cATCAT

W WININ|=-O
BRI WWINN| O -
N N | e [ ©] NO| md
WIN[NQ| = N[N
- (DN = | W N
NI Q= | NN W[ W
SN = W[N] || W
- NN W[ W] W~
- W[N|BW| U]~
N W[|W W&
N|Rh|[|W UG
W W[ H~|afu|on|
WU~ ur| |

cost operation H input ‘ output

0 (copy) C c
1 insert * a
1 insert * t
1 insert * c
0 (copy) a a
0 (copy) t t

40/ 52



Dictionaries Wildcard queries Spelling correction Levenshtein distance

Example: Levenshtein distance cAT — cATCAT

W WINN| ==
BRI WWINN| O -
N N | e [ ©] NO| md
WIN|IN O =N N
- (DN - | W N
N Q| = N[N| W[ W
S N =|W|[N|B~[W
- NN W[ W W~
- WIN|B||wW| o]~
N W|W W&o
N R|w| |~
W W[ H~|afu|on|
WU~ ur| |

cost operation H input ‘ output

0 (copy) C c
0 (copy) a a
1 insert * t
1 insert * C
1 insert * a
0 (copy) t t

40/ 52



Dictionaries Wildcard queries Spelling correction Levenshtein distance

Example: Levenshtein distance cAT — cATCAT

W WINN| ==
BRI WWINN| O -
N N | e [ ©] NO| md
WIN|IN O =N N
- (DN - | W N
N Ol = | NN|W|| W
SN = | WIN| D W
- NN W[ W W~
- W[N] W| | &
N W|W W&o
N R|W ||| G
[SSRNSSRIRN-N NS, §INS; § Mo NN~ Y
Wl U~ U1]| ||

cost operation H input ‘ output

(copy) c
(copy) a
(copy) t
insert *

insert

alalalo|o|lo
~lo|la|l~|lo|la

insert

40/ 52



Weighted edit distance

> As above, but operation weights depend on the characters involved.

> Meant to capture keyboard errors
(e.g., m more likely to be mistyped as n than as g).

» Therefore, replacing m by n is a smaller edit distance than by q.
> Requires a weight matrix as input.

» The dynamic programming need to be modified to handle weights.

41/52



Levenshtein distance

Using edit distance for spelling correction

> Given a query, first enumerate all character sequences within a preset
(possibly weighted) edit distance.

> Intersect this set with our list of “correct” words.
> Then suggest terms in the intersection to the user.

> — exercise in a few slides.

42/52



Levenshtein distance

k-gram indexes for spelling correction

» Enumerate all k-grams in the query term

> Example:
> bigram index, misspelled word: bordroom

» bigrams: bo, or, rd, dr, ro, oo, om

> Use the k-gram index to retrieve “correct” words that match query
term k-grams

» Threshold by number of matching k-grams
(e.g., only vocabulary terms that differ by at most 3 k-grams)

43/52



Dictionaries Wildcard queries Spelling correction Levenshtein distance

k-gram indexes for spelling correction: bordroom

BO aboard about boardroom border
OR border lord morbid sordid
RD aboard ardent boardroom border

44 /52



Levenshtein distance

Context-sensitive spelling correction

» Our example was: an asteroid that fell form the sky
» How can we correct form here?

» One idea: hit-based spelling correction (hit = retrieved document)

1. Retrieve “correct” terms close to each query term
for flew form munich: flea for flew, from for form, munch for munich

2. Try all possible phrases as queries with one word “fixed” at a time:
“flea form munich”, “flew from munich”, “flew form munch”

3. The correct query “flew from munich” has the most hits.

» Suppose we have 7 alternatives for flew, 20 for form and 3 for munich,
how many “corrected” phrases will we enumerate?

45/52



Context-sensitive spelling correction cont’d.

» The “hit-based” algorithm we just outlined is not very efficient.

> More efficient alternative: look at “collection” of queries (query logs),
not documents.

> Another alternative: learn corrections from the users (mine query
logs for sequences of a incorrect query followed by a corrected query).

46 /52



Levenshtein distance

General issues in spelling correction

> User interface:
> automatic vs. suggested correction
» Did you mean only works for one suggestion.
> What about multiple possible corrections?
» Tradeoff: simple vs. powerful Ul
> Cost:
» Spelling correction is potentially expensive.
> Avoid running on every query?
> Maybe just on queries that match few documents.

> Guess: Spelling correction of major search engines is efficient enough
to be run on every query.

47 /52



Soundex

Soundex

48/ 52



Soundex

Soundex

> Soundex is the basis for finding phonetic (as opposed to
orthographic) alternatives (in English).

> Example: chebyshev / tchebyscheff

> Algorithm:
1. Turn every token to be indexed into a 4-character reduced form
2. Do the same with query terms

3. Build and search an index on the reduced forms

49 /52



Soundex

Soundex algorithm

1. Retain the first letter of the term.

2. Change all occurrences of the following letters to ’0’ (zero): A, E, I, O,
U H WY

3. Change letters to digits as follows:
> B,F,P,Vto1l

CG, ), KQS, X, Zto2

D,Tto3

Lto4

M, Nto5

Rto6

vyvyvyvVvyy

4. Repeatedly remove one out of each pair of consecutive identical
digits.

5. Remove all zeros from the resulting string; pad the resulting string
with trailing zeros and return the first four positions, which will
consist of a letter followed by three digits.

50 /52



Example: Soundex of HERMAN

» Retain H

> ERMAN — ORMON
> ORMON — 06505

> 06505 — 06505

> 06505 — 655

> Return H655

> Note: HERMANN will generate the same code

51/52



Soundex

How useful is Soundex?

> Not very — for information retrieval
» OK for “high recall” tasks in other applications (e.g., Interpol)

> Zobel and Dart (1996) suggest better alternatives for phonetic
matching in IR.

52/52



	Dictionaries
	Hashes and trees

	Wildcard queries
	Permuterm index
	k-gram index

	Spelling correction
	Levenshtein distance
	Soundex

