
Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

NPFL103: Information Retrieval (2)
Dictionaries, Tolerant retrieval, Spelling correction

Pavel Pecina
pecina@ufal.mff.cuni.cz

Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics

Charles University

Based on slides by Hinrich Schütze, University of Stuttgart.

1 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Contents

Dictionaries
Hashes and trees

Wildcard queries
Permuterm index
k-gram index

Spelling correction

Levenshtein distance

Soundex

2 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Dictionaries

3 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Inverted index

For each term t, we store a list of all documents that contain t.

BRutus −→ 1 2 4 11 31 45 173 174

CaesaR −→ 1 2 4 5 6 16 57 132 …

CalpuRnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings

The dictionary is the data structure for storing the term vocabulary.

4 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Dictionary as array of fixed-width entries

▶ For each term, we need to store a couple of items:
▶ document frequency

▶ pointer to postings list

▶ …

▶ Assume for the time being that we can store this information in a
fixed-length entry.

▶ Assume that we store these entries in an array.

5 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Dictionary as array of fixed-width entries

Dictionary: term document
frequency

pointer to
postings list

a 656,265 −→
aachen 65 −→
… … …
zulu 221 −→

Space needed: 20 bytes 4 bytes 4 bytes

1. How do we look up a query term qi in this array at query time?

2. Which data structure do we use to locate the entry (row) in the array
where qi is stored?

6 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Data structures for looking up term

▶ Two main classes of data structures: hashes and trees.

▶ Some IR systems use hashes, some use trees.

▶ Criteria for when to use hashes vs. trees:

1. Is there a fixed number of terms or will it keep growing?

2. What are the frequencies with which various keys will be accessed?

3. How many terms are we likely to have?

8 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Hashes

▶ Each vocabulary term is hashed into an integer.

▶ Try to avoid collisions

▶ At query time, do the following: hash query term, resolve collisions,
locate entry in fixed-width array

▶ Pros:
1. Lookup in a hash is faster than lookup in a tree.
2. Lookup time is constant.

▶ Cons:
1. no way to find minor variants (resume vs. résumé)
2. no prefix search (all terms starting with automat)
3. need to rehash everything periodically if vocabulary keeps growing

9 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Trees

▶ Trees solve the prefix problem (e.g. find all terms starting with auto).

▶ Search is slightly slower than in hashes: O(logM), where M is the size
of the vocabulary

▶ O(logM) only holds for balanced trees. Rebalancing is expensive.

▶ B-trees mitigate the rebalancing problem.

▶ B-tree definition: every internal node has a number of children in the
interval [a, b] where a, b are appropriate positive integers, e.g., [2, 4].

▶ Simplest tree: binary tree

10 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Binary tree example

11 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

B-tree example

12 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Wildcard queries

13 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Wildcard queries

▶ mon*: find all docs containing any term beginning with mon

▶ With B-tree dictionary: find all terms t in the range mon ≤ t < moo

▶ *mon: find all docs containing any term ending with mon

1. Maintain an additional tree for terms backwards

2. Retrieve all terms t in the range: nom ≤ t < non

▶ Result: A set of terms that are matches for wildcard query

▶ Then retrieve documents that contain any of these terms

14 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

How to handle * in the middle of a term

▶ Example: m*nchen

▶ Simple approach: We look up m* and *nchen in the backward B-tree
and intersect the two sets of terms (expensive).

▶ Alternative: permuterm index
▶ Basic idea: Rotate every wildcard query so that * occurs at the end.

▶ Store each of these rotations in the dictionary, say, in a B-tree

▶ For term hello: add hello$, ello$h, llohe, lohel, and o$hell to the
B-tree where $ is a special symbol

16 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Permuterm→ term mapping

17 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Permuterm index

▶ For hello, we’ve stored: hello$, ello$h, llohe, lohel, and o$hell

▶ Queries:
▶ For X, look up X$
▶ For X*, look up $X*
▶ For *X, look up X$*
▶ For *X*, look up X*
▶ For X*Y, look up Y$X*

▶ Example: For hel*o, look up o$hel*

18 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Processing a lookup in the permuterm index

▶ Rotate query wildcard to the right

▶ Use B-tree lookup as before

▶ Problem: Permuterm more than quadruples the size of the dictionary
compared to a regular B-tree (empirical estimation).

19 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

k-gram indexes

▶ More space-efficient than permuterm index

▶ Enumerate all character k-grams (sequence of k characters) occurring
in a term (2-grams are called bigrams).

▶ Example: from “April is the cruelest month” we get the bigrams:
$a ap pr ri il l$ $i is s$ $t th he e$ $c cr ru ue el le es st t$ $m mo on nt h$

▶ $ is a special word boundary symbol, as before.

▶ Maintain an inverted index from bigrams to the terms that contain
the bigram.

21 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Postings list in a 3-gram inverted index

etr beetRoot metRic petRify RetRieval- - - -

22 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

k-gram (bigram, trigram, …) indexes

▶ Note that we now have two different types of inverted indexes

▶ The term-document inverted index for finding documents based on a
query consisting of terms

BRutus −→ 1 2 4 11 31 45 173 174

▶ The k-gram index for finding terms based on a query k-grams

etr beetRoot metRic petRify RetRieval- - - -

23 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Processing wildcarded terms in a bigram index

▶ Query mon* can now be run as: $m and mo and on

▶ Gets us all terms with the prefix mon …

…but also many “false positives” like moon.

▶ We must postfilter these terms against query.

▶ Surviving terms are then looked up in term-document inverted index.

▶ k-gram index vs. permuterm index
▶ k-gram index is more space efficient.

▶ Permuterm index doesn’t require postfiltering.

24 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Exercise

▶ Google has very limited support for wildcard queries.

▶ Query example which doesn’t work well on Google: [gen* universit*]
▶ Intention: you are looking for the University of Geneva, but don’t know

which accents to use for the French words for university and Geneva.

▶ According to Google search basics, 2010-04-29: “Note that the *
operator works only on whole words, not parts of words.”

▶ But this is not entirely true. Try e.g. [pythag*]

▶ Exercise: Why doesn’t Google fully support wildcard queries?

25 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Processing wildcard queries in the term-document index

▶ Problem 1: Potential execution of a large number of Boolean queries.
▶ Most straightforward semantics: Conjunction of disjunctions

▶ For [gen* universit*]: geneva university oR geneva université oR genève
university oR genève université oR general universities oR …

▶ Very expensive

▶ Problem 2: Users hate to type.
▶ If abbreviated queries like [pyth* theo*] for [pythagoras’ theorem] are

allowed, users will use them a lot.

▶ This would significantly increase the cost of answering queries.

▶ Somewhat alleviated by Google Suggest

26 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Spelling correction

27 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Spelling correction

▶ Two principal uses:

1. Correcting documents being indexed

2. Correcting user queries at query time

▶ Two different methods for spelling correction:

1. Isolated word spelling correction
▶ Check each word on its own for misspelling

▶ Will not catch typos resulting in correctly spelled words,
e.g., an asteroid that fell form the sky

2. Context-sensitive spelling correction
▶ Look at surrounding words

▶ Can correct form/from error above

28 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Correcting documents vs. correcting queries

▶ We’re not interested in interactive spelling correction of documents.

▶ In IR, we use document correction primarily for OCR’ed documents.
(OCR = optical character recognition)

▶ The general philosophy in IR is: don’t change the documents.

▶ Spelling errors in queries are much more frequent

29 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Isolated word spelling correction

▶ Premises:

1. There is a list of “correct words” from which the correct spellings come.

2. We have a way of computing the distance between a misspelled word
and a correct word.

▶ Simple algorithm: return the “correct” word that has the smallest
distance to the misspelled word.

▶ Example: informaton→ information

▶ For the list of correct words, we can use the vocabulary of all words
that occur in our collection.

▶ Why is this problematic?

30 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Alternatives to using the term vocabulary

▶ A standard dictionary (Webster’s, OED etc.)

▶ An industry-specific dictionary (for specialized IR systems)

▶ The term vocabulary of the collection, appropriately weighted

31 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Distance between misspelled word and “correct” word

We will discuss several alternatives:

1. Edit distance and Levenshtein distance

2. Weighted edit distance

3. k-gram overlap

32 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Edit distance

▶ The edit distance between string s1 and string s2 is the minimum
number of basic operations that convert s1 to s2.

▶ Levenshtein: The basic operations are insert, delete, and replace.

▶ Examples:
▶ Levenshtein distance dog-do: 1
▶ Levenshtein distance cat-cart: 1
▶ Levenshtein distance cat-cut: 1
▶ Levenshtein distance cat-act: 2

▶ Damerau-Levenshtein: transposition as a fourth possible operation.

▶ Example:
▶ Damerau-Levenshtein distance cat-act: 1

33 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Levenshtein distance

34 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Levenshtein distance: Computation

f a s t
0 1 2 3 4

c 1 1 2 3 4

a 2 2 1 2 3

t 3 3 2 2 2

s 4 4 3 2 3

35 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Levenshtein distance: Algorithm

LevenshteinDistance(s1, s2)
1 for i← 0 to |s1|
2 do m[i, 0] = i
3 for j← 0 to |s2|
4 do m[0, j] = j
5 for i← 1 to |s1|
6 do for j← 1 to |s2|
7 do if s1[i] = s2[j]
8 then m[i, j] = min{m[i-1, j]+1,m[i, j-1]+1,m[i-1, j-1]}
9 else m[i, j] = min{m[i-1, j]+1,m[i, j-1]+1,m[i-1, j-1]+1}

10 return m[|s1|, |s2|]

Operations: insert (cost 1), delete (cost 1), replace (cost 1), copy (cost 0)

36 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Levenshtein distance: Example

f a s t

0 1 1 2 2 3 3 4 4

c
1
1

1 2
2 1

2 3
2 2

3 4
3 3

4 5
4 4

a
2
2

2 2
3 2

1 3
3 1

3 4
2 2

4 5
3 3

t
3
3

3 3
4 3

3 2
4 2

2 3
3 2

2 4
3 2

s
4
4

4 4
5 4

4 3
5 3

2 3
4 2

3 3
3 3

37 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Each cell of Levenshtein matrix

↘ ↓

cost of getting here from my
upper left neighbor

→ copy/replace

cost of getting here from my
upper neighbor

→ delete

−→
cost of getting here from my
left neighbor

→ insert

the minimum of the three
possible “movements”; the
cheapest way of getting here

38 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Example: Levenshtein distance oslo – snow

s n o w

0 1 1 2 2 3 3 4 4

o
1
1

1 2
2 1

2 3
2 2

2 4
3 2

4 5
3 3

s
2
2

1 2
3 1

2 3
2 2

3 3
3 3

3 4
4 3

l
3
3

3 2
4 2

2 3
3 2

3 4
3 3

4 4
4 4

o
4
4

4 3
5 3

3 3
4 3

2 4
4 2

4 5
3 3

cost operation input output

1 delete o *
0 (copy) s s
1 replace l n
0 (copy) o o
1 insert * w

39 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Example: Levenshtein distance cat – catcat

c a t c a t

0 1 1 2 2 3 3 4 4 5 5 6 6

c
1
1

0 2
2 0

2 3
1 1

3 4
2 2

3 5
3 3

5 6
4 4

6 7
5 5

a
2
2

2 1
3 1

0 2
2 0

2 3
1 1

3 4
2 2

3 5
3 3

5 6
4 4

t
3
3

3 2
4 2

2 1
3 1

0 2
2 0

2 3
1 1

3 4
2 2

3 5
3 3

cost operation input output

1 insert * c
1 insert * a
1 insert * t
0 (copy) c c
0 (copy) a a
0 (copy) t t

40 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Example: Levenshtein distance cat – catcat

c a t c a t

0 1 1 2 2 3 3 4 4 5 5 6 6

c
1
1

0 2
2 0

2 3
1 1

3 4
2 2

3 5
3 3

5 6
4 4

6 7
5 5

a
2
2

2 1
3 1

0 2
2 0

2 3
1 1

3 4
2 2

3 5
3 3

5 6
4 4

t
3
3

3 2
4 2

2 1
3 1

0 2
2 0

2 3
1 1

3 4
2 2

3 5
3 3

cost operation input output

0 (copy) c c
1 insert * a
1 insert * t
1 insert * c
0 (copy) a a
0 (copy) t t

40 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Example: Levenshtein distance cat – catcat

c a t c a t

0 1 1 2 2 3 3 4 4 5 5 6 6

c
1
1

0 2
2 0

2 3
1 1

3 4
2 2

3 5
3 3

5 6
4 4

6 7
5 5

a
2
2

2 1
3 1

0 2
2 0

2 3
1 1

3 4
2 2

3 5
3 3

5 6
4 4

t
3
3

3 2
4 2

2 1
3 1

0 2
2 0

2 3
1 1

3 4
2 2

3 5
3 3

cost operation input output

0 (copy) c c
0 (copy) a a
1 insert * t
1 insert * c
1 insert * a
0 (copy) t t

40 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Example: Levenshtein distance cat – catcat

c a t c a t

0 1 1 2 2 3 3 4 4 5 5 6 6

c
1
1

0 2
2 0

2 3
1 1

3 4
2 2

3 5
3 3

5 6
4 4

6 7
5 5

a
2
2

2 1
3 1

0 2
2 0

2 3
1 1

3 4
2 2

3 5
3 3

5 6
4 4

t
3
3

3 2
4 2

2 1
3 1

0 2
2 0

2 3
1 1

3 4
2 2

3 5
3 3

cost operation input output

0 (copy) c c
0 (copy) a a
0 (copy) t t
1 insert * c
1 insert * a
1 insert * t

40 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Weighted edit distance

▶ As above, but operation weights depend on the characters involved.

▶ Meant to capture keyboard errors
(e.g., m more likely to be mistyped as n than as q).

▶ Therefore, replacing m by n is a smaller edit distance than by q.

▶ Requires a weight matrix as input.

▶ The dynamic programming need to be modified to handle weights.

41 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Using edit distance for spelling correction

▶ Given a query, first enumerate all character sequences within a preset
(possibly weighted) edit distance.

▶ Intersect this set with our list of “correct” words.

▶ Then suggest terms in the intersection to the user.

▶ → exercise in a few slides.

42 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

k-gram indexes for spelling correction

▶ Enumerate all k-grams in the query term

▶ Example:
▶ bigram index, misspelled word: bordroom

▶ bigrams: bo, or, rd, dr, ro, oo, om

▶ Use the k-gram index to retrieve “correct” words that match query
term k-grams

▶ Threshold by number of matching k-grams
(e.g., only vocabulary terms that differ by at most 3 k-grams)

43 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

k-gram indexes for spelling correction: bordroom

Rd aboard ardent boardroom border

oR border lord morbid sordid

bo aboard about boardroom border

- - - -

- - - -

- - - -

44 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Context-sensitive spelling correction

▶ Our example was: an asteroid that fell form the sky

▶ How can we correct form here?

▶ One idea: hit-based spelling correction (hit = retrieved document)
1. Retrieve “correct” terms close to each query term

for flew form munich: flea for flew, from for form, munch for munich

2. Try all possible phrases as queries with one word “fixed” at a time:
“flea form munich”, “flew from munich”, “flew form munch”

3. The correct query “flew from munich” has the most hits.

▶ Suppose we have 7 alternatives for flew, 20 for form and 3 for munich,
how many “corrected” phrases will we enumerate?

45 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Context-sensitive spelling correction cont’d.

▶ The “hit-based” algorithm we just outlined is not very efficient.

▶ More efficient alternative: look at “collection” of queries (query logs),
not documents.

▶ Another alternative: learn corrections from the users (mine query
logs for sequences of a incorrect query followed by a corrected query).

46 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

General issues in spelling correction

▶ User interface:
▶ automatic vs. suggested correction

▶ Did you mean only works for one suggestion.

▶ What about multiple possible corrections?

▶ Tradeoff: simple vs. powerful UI

▶ Cost:
▶ Spelling correction is potentially expensive.

▶ Avoid running on every query?

▶ Maybe just on queries that match few documents.

▶ Guess: Spelling correction of major search engines is efficient enough
to be run on every query.

47 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Soundex

48 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Soundex

▶ Soundex is the basis for finding phonetic (as opposed to
orthographic) alternatives (in English).

▶ Example: chebyshev / tchebyscheff

▶ Algorithm:

1. Turn every token to be indexed into a 4-character reduced form

2. Do the same with query terms

3. Build and search an index on the reduced forms

49 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Soundex algorithm

1. Retain the first letter of the term.

2. Change all occurrences of the following letters to ’0’ (zero): A, E, I, O,
U, H, W, Y

3. Change letters to digits as follows:
▶ B, F, P, V to 1
▶ C, G, J, K, Q, S, X, Z to 2
▶ D,T to 3
▶ L to 4
▶ M, N to 5
▶ R to 6

4. Repeatedly remove one out of each pair of consecutive identical
digits.

5. Remove all zeros from the resulting string; pad the resulting string
with trailing zeros and return the first four positions, which will
consist of a letter followed by three digits.

50 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

Example: Soundex of HERMAN

▶ Retain H

▶ ERMAN→ 0RM0N

▶ 0RM0N→ 06505

▶ 06505→ 06505

▶ 06505→ 655

▶ Return H655

▶ Note: HERMANN will generate the same code

51 / 52

Dictionaries Wildcard queries Spelling correction Levenshtein distance Soundex

How useful is Soundex?

▶ Not very – for information retrieval

▶ OK for “high recall” tasks in other applications (e.g., Interpol)

▶ Zobel and Dart (1996) suggest better alternatives for phonetic
matching in IR.

52 / 52

	Dictionaries
	Hashes and trees

	Wildcard queries
	Permuterm index
	k-gram index

	Spelling correction
	Levenshtein distance
	Soundex

